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There is an ever-increasing need for rapid, non-invasive, yet 
accurate methods for cancer diagnosis given that cancer is the 
most common cause of global disease-related mortality, and 

the current invasive, unpleasant and inconvenient clinical diagnos-
tic procedures limit their applications1. A diagnostic method that 
can quickly and accurately analyse changes in cancer biomarkers in 
biological samples will greatly facilitate cancer diagnosis, monitor-
ing, therapy and prognosis2–4.

Compared to the genomic and proteomic marker molecules, 
such as DNA, messenger RNA and proteins, non-coding miRNA 
expression levels have been found to be extremely informative for 
classifying tumour and normal cells5–7. It has also been reported 
that the levels of miRNA in serum of patients with cancer is con-
sistently and reproducibly different from those of healthy controls8. 
Therefore, miRNAs have become notable tumour markers for rapid 
and non-invasive cancer diagnosis9.

However, miRNA levels of individuals exhibit a great complex-
ity in their variety and quantity, and alterations in either factor can 
lead to different diagnostic results7. Current methods for miRNA 
identification, including quantitative PCR with reverse transcrip-
tion (RT–qPCR), microarrays and RNA sequencing, can provide 
quantitative miRNA expression profiles for diagnostic applica-
tions; but they remain cost prohibitive, labour intensive and hard-
ware limited under different situations10. In addition, the multiple 
rounds of parallel operations may lead to non-negligible errors 
in individual miRNA quantitation and subsequently affect the 
diagnostic results. Furthermore, data analysis for these methods 
requires expertise for comprehensive understanding, which limits 
the application scenarios of these methods to specialized laboura-
tory settings. Accordingly, there is still need for diagnostic methods 
that can accurately analyse multiple miRNA changes correlated to 
cancers and report results directly and rapidly at the point of care.

DNA molecular computation provides a natural interface 
between molecular recognition and information processing, because 
DNA can interact with different molecules, transduce the signals 

and report the results in a programmable manner11,12. With these 
functions, DNA computation has been implemented for various 
applications, including solving non-polynomial problems in math13, 
mimicking complex systems14,15, performing logical biosensing16,17, 
analysing cell surface receptors18–22, sorting molecular cargos23, 
playing logical games24–27 and recognizing patterns28. However, 
rationally designed DNA computation systems have seldom been 
employed in diagnostic applications, where the integration of mul-
tiple biomarker recognition and logical information processing is 
most needed, especially in biological samples towards clinical appli-
cations, with only a few successful examples in classifying diseases 
in synthetic samples mimicking practical analyte composition29–31.

In our opinion, several existing technical difficulties hinder the 
clinical applications of DNA molecular computation for cancer 
diagnostics. First, the incompatibility of complex biomarker inputs 
in biological samples with simple Boolean values (either high or 
low) compromises the accuracy of diagnosis. Specifically, it is dif-
ficult to develop powerful computation algorithms that allow sim-
ple molecular implementation without constraint by the variety or 
quantity of biomarker inputs. Second, the highly dynamic analyte 
concentration ranges in biological samples require robust and sen-
sitive design for interfacing the sensing and subsequent computa-
tion32. In addition, highly specific biomarkers such as miRNA are 
typically short, unstructured oligonucleotides with sequence simi-
larity between family members, which greatly affect the sequence 
orthogonality in the computation7. Therefore, we sought to resolve 
those challenges by implementing a DNA-based computational 
platform that operates on miRNAs in serum and rapidly produces 
diagnostic results for lung cancer.

The workflow of the DNA-based computational platform includes 
three main steps, as shown in Fig. 1a. First, an in silico linear classifier 
is constructed and trained using publicly available miRNA-seq profiles 
of healthy and non-small cell lung cancer (NSCLC) individuals from 
The Cancer Genome Atlas (TCGA). The goal of this step is to have a 
set of miRNA inputs with associated weights and a set of mathematical  
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operations performed over these inputs for optimum classification 
of healthy and lung cancer individuals. Next, the in silico-trained 
classifier is decoded to a computational scheme at a molecular level. 
We found that a DNA-based molecular computer with simplified 
winner-takes-all computation scheme can experimentally implement 
classifier trained in silico28. Finally, the performance of the DNA-based 
computation is validated on synthetic and clinical samples, which 
include miRNA amplification in serum, transformation of the ampli-
fied linear single-stranded DNA to circular DNA for more sequence 
orthogonality and DNA computation with weight multiplication, 
summation and subtraction followed by signal reporting.

In silico training for model construction
To build an effective classifier model, we selected the support vec-
tor machine (SVM) to train the data with the following conditions 
and steps33. First, publicly available miRNA expression data corre-
sponding to 915 NSCLC and 105 healthy individuals from TCGA 
were used for differential expression analysis with the goal to clas-
sify the data into cancer and healthy groups with a desired accuracy. 
This initial analysis successfully identified 33 up-regulated and 22 
down-regulated miRNA candidates with their stable expression lev-
els in the NSCLC group four times more than those of the healthy 
group (Supplementary Fig. 1). The relatively large differences in 
miRNA levels between the two groups can ensure the sensitivity 
and specificity of the classifier by selecting only moderate numbers 
of inputs to prevent potential crosstalk between large numbers of 
probes and incorrect targets. Second, more constraints were applied 
to the 55 miRNA inputs to obtain a minimal set of inputs without 
compromising the classifier accuracy. For instance, we artificially 
limited the weights and mathematical operations to integers lower 
than ten and only to summation, multiplication and subtraction.  

We also applied a higher misclassification penalty score for the 
healthy individuals (false negative) than for the patients with lung 
cancer (false positive) with the intention to prevent false nega-
tive diagnosis that may delay treatment. It should be noted that 
we used the log10 to process the initial miRNA concentration data 
for the training to make the concentration data consistent with the 
mechanism of PCR amplification (Supplementary Note). Finally, 
different models were evaluated for the selection of optimum clas-
sification performance (for example, >95% accuracy). The selected 
model, including four miRNA inputs of miR-148a-3p, miR-182-5p, 
miR-30d-5p and miR-30a-3p, associated with positive and nega-
tive weights ranging from integer values of −4 to +4 can achieve 
a NSCLC identification sensitivity of 100% (95% confidence inter-
val (CI): 99.2%, 100%), specificity of 85.7% (95% CI: 74.1%, 92.9%) 
and accuracy of 98.7% (95% CI: 97.5%, 99.4%) on the basis of the 
training set (630 lung cancer and 63 healthy samples) (Fig. 1b,c 
and Supplementary Figs. 2 and 3). We also validated the classifier 
model with 270 lung cancer and 27 healthy samples, and obtained 
a diagnosis sensitivity of 99.6% (95% CI: 97.6%, 99.9%), specificity 
of 85.2% (95% CI: 65.4%, 95.1%) and accuracy of 98.3% (95% CI: 
96.0%, 99.4%) (Fig. 1d and Supplementary Fig. 3). In comparison, 
we found that using single miRNA from the dysregulated miRNA 
pool can only achieve 60–80% diagnostic accuracy for NSCLC in 
silico (Supplementary Fig. 4). Therefore, with this classifier that 
shows good sensitivity and specificity, along with simplified math-
ematical operations, it is feasible to achieve the molecular imple-
mentation with a set of carefully designed DNA probes.

miRNA amplification and transformation
One obstacle that limits the miRNA-based computation for clini-
cal applications is the low concentration of miRNA (≤pM) in the  
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Fig. 1 | DNA computation platform for NSCLC diagnosis. a, The workflow for NSCLC diagnosis with the DNA computation platform: in silico training using 
publicly available miRNA-seq profiles of healthy and NSCLC individuals from TCGA (i) ; DNA implementation of multiplication, summation and subtraction 
(ii) and experimental validation on synthetic and clinical serum samples (iii). miRNA a–d are the miRNA inputs. W1–W4 are the weights associated to 
corresponding miRNA inputs. ∑1 and ∑2 are the mathematical weighted sum of corresponding miRNA inputs. b, Selected miRNA combinations and their 
associated weights for the classifier model. c, Performance of the in silico-trained classifier with data from the training set, in which 100 and 85.7% of 
NSCLC and healthy samples were classified correctly with an area under curve >0.99. The training set includes miRNA-seq data from 630 NSCLC and 63 
healthy individuals in TCGA. d, Performance of the classifier with data from the validation set, where 99.6 and 85.2% of NSCLC and healthy samples were 
labelled correctly with area under curve of 0.99. The validation set includes miRNA-seq data from 270 lung cancer and 27 healthy individuals in TCGA.
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biological samples, such as serum, which is undetectable for the 
subsequent computation reactions. In addition, an amplification 
method with a linear response is necessary to maintain the ini-
tial ratios of each miRNA input so that the amplified sample can 
still possess the miRNA quantity information that is important for 
downstream classification analysis. Here, we used an improved 
asymmetric PCR, linear after the exponential PCR (LATE-PCR), to 
achieve close-to-linear amplification of miRNA, with respect to their 
logarithmic initial concentrations in a specific range (0.1–10 pM)34. 
Because the concentrations of miRNA inputs have been already 
processed with a logarithmic transformation during the in silico 
training, the LATE-PCR can maintain the initial miRNA quantity 
information after amplification if the concentrations are in the lin-
ear amplification range. As shown in Fig. 2a and Supplementary Fig. 
5, the extracted miRNAs were first reversely transcribed into com-
plementary DNA. We studied the RNA extraction efficiency using 
different commercial kits and found some statistically unneglect-
able variations in the miRNA distribution (Supplementary Fig. 6). 
However, this variation did not affect the diagnostic decision using 
our SVM-trained model (Supplementary Fig. 7). Furthermore, two 
different types of specially designed primer (excess primer and 
limiting primer) were used for LATE-PCR reactions. By adjusting 
the length and nucleotide composition of the limiting and excess 
primers to assure that ðT limiting

m � Texcess
m Þ>0

I
, together with the 

concentration ratios of those two primers, the exponential phase of 
the PCR reaction can switch to the linear phase shortly after the 
limiting primers are exhausted (fewer than ten cycles). This feature 
diminishes the concentration biases occurring at the exponential 

amplification step leading to amplified ssDNA products with quan-
titative ratios similar to those of the original logarithmic concentra-
tions of the miRNA inputs (Supplementary Note)34,35. Meanwhile, 
by controlling the amplification cycle numbers, we can keep the 
amplified ssDNA products in a suitable concentration range, pro-
viding optimum concentrations for subsequent DNA computation 
(Supplementary Fig. 8). Figure 2b,c exhibits the results of ampli-
fied ssDNA products from a series of miRNA initial concentra-
tions ranging from 0.1 to 10 pM using an optimized real-time 
LATE-PCR. We also combined four different miRNA inputs of 
miR-148a-3p, miR-182-5p, miR-30d-5p and miR-30a-3p with 
various initial concentrations in a mixture and amplified them by 
LATE-PCR. The results showed a linear relationship of the original 
logarithmic concentrations of the miRNAs and the final concentra-
tions of cDNA products post amplification, confirming the feasibil-
ity of this method for simultaneous linear amplification of multiple 
inputs (Supplementary Figs. 9 and 10). Therefore, this LATE-PCR 
can help mitigate the bias associated with exponential amplifica-
tion methods and convert the low concentrations of miRNA inputs 
(≤pM) to much higher concentrations of ssDNA (≥nM) without 
perturbing their original variety and quantity information.

Given that the amplified ssDNA products from miRNA inputs 
do not have sufficient sequence specificity for subsequent computa-
tion, we developed a strategy to transform an amplified ssDNA to 
a loop DNA with T4 ligase, as shown in Fig. 2a. This loop DNA 
can allow more sites for encoding orthogonal sequences for sub-
sequent DNA computation without disturbing the concentration 
and sequence information of the transformed ssDNA. Because the 
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ssDNA templates and unsuccessful ligation products would remain 
after ligation, possibly causing interference in the subsequent reac-
tions, we used Exonuclease I and RNase H to remove the non-loop 
DNA sequences post ligation. As shown in Fig. 2d, only pure loop 
DNA was observed in the products if samples were processed with 
enzymes. In addition, the final concentrations of loop DNA linearly 
correlated to the logarithms of the original miRNA concentrations, 
as shown in Fig. 2e,f. Therefore, in this step, ssDNA amplified by 
LATE-PCR can be transformed into loop DNA for subsequent DNA 
computations without disturbing their quantity ratios.

Molecular implementation of in silico model
To have simple (yes or no), but accurate, diagnostic results, a sys-
tematic implementation of the in silico-trained classifier with sim-
plified winner-take-all computation scheme was designed, in which 
the output for a sample reports only the larger weighted sum of 
inputs of the same kinds28. Specifically, the mathematical weighted 
sum of healthy miRNA inputs is compared with that of cancer 
miRNA inputs, and only the larger is used to report the correspond-
ing signals for diagnosis of either healthy or cancer. We simplified 
the mathematical operations of the in silico-trained classifier into 
three substeps, including multiplication, summation and subtrac-
tion, and used cascaded DNA strand displacement to implement 
the calculations at a molecular level36.

First, different miRNA inputs undergo weighted multiplication 
with their initial concentrations (Wn × c(miRNAn) = Tn), where Wn is 
the predefined weight, c(miRNAn) is the miRNA concentration and 
Tn is the weighted multiplication, respectively. In the in silico model, 
we found that miR-148a-3p and miR-182-5p are positively corre-
lated to NSCLC and associated with weights of 2 and 4, respectively; 
while miR-30d-5p and miR-30a-3p are negatively associated with 
NSCLC with weights of −1 and −3, respectively. It should be noted 
that the numerical weights associated with these four miRNAs are 
practically capturing their levels of significance for determination of 
the diagnostic results. Using the loop DNA products that are ampli-
fied and transformed from the miRNA inputs, we designed a set of 
multiplication probes (M probe) that can target different sequence 
regions within each loop DNA (An) to implement the weight (Wn) 
(Fig. 3a and Supplementary Fig. 11). For example, weights Wn = 4, 
3, 2 or 1 are realized by having 4, 3, 2 or 1 distinct sequence regions 
that can be targeted by M probes in the same An. We used a fluo-
rescence reporting scheme (M reporter in Supplementary Fig. 11) 
based on a strand displacement reaction to verify the multiplica-
tion calculation (Wn × c(An) = Tn) by checking the concentrations of 
generated An–M probe complexes (T probe) (Supplementary Fig. 
12). As shown in Fig. 3b, the steady-state concentrations of T probes 
are linearly proportional to the number of M probes bound to An 
of different concentrations, demonstrating the effective molecular 
implementation of the multiplication operations.

Second, the different weight multiplications (Tn) within the 
groups of healthy or cancer miRNA inputs are summed (T1 + T2 = E; 
T3 + T4 = F). This is achieved by adding a summation probe (S probe) 
that can react with the T probe resulting from the multiplication 
step (Fig. 3c). Specifically, this S probe can bind with the identical 
sequence regions in T probe through a DNA displacement reaction 
and convert the same type of signals to a common weighted-sum 
species (E or F probe). We also used a fluorescent reporter probe (S 
reporter) to test the summed concentrations of T1 and T2 (or T3 and 
T4) and found correct signals corresponding to the total concentra-
tions of both complexes (Fig. 3d and Supplementary Figs. 13 and 
14). Therefore, we believe this summation scheme can accurately 
determine the weighted sums of miRNA inputs of the same type.

Finally, the sums of two different types of input are compared 
by a subtraction operation for reporting the diagnostic results 
(E − F = diagnostic result, Fig. 3e). In this design, weighted sums 
of positive and negative output strands (E and F probe) obtained 

from the previous step can annihilate each other until only the main 
species is left based on a cooperative hybridization scheme37,38. One 
weighted-sum sequence (E probe) resulted from the previous sum-
mation step can bind to a toehold on one side of the annihilator 
probe (N probe) to reversibly form an intermediate complex, so 
that no molecules are consumed. However, if another weighted-sum 
strand (F probe) is also present, it can bind to the N probe on another 
toehold on the opposite side and break the N probe into two inert 
products that are not able to report any signal. In this way, the anni-
hilation reaction allows effective subtraction of two weighted sums 
and exhausts the smaller number of the weighted sums resulting 
from previous multiplication and summation operations to leave 
only the larger value (Supplementary Fig. 15).

We used two distinct fluorescent reporters with FAM and ROX 
fluorophores to report the corresponding outputs associated with 
positive and negative weights after the subtraction operation. A 
catalytic entropy-driven amplification restores the offset signals 
and improves the reporting sensitivity (Supplementary Fig. 16). On 
reporter calibration, the fluorescence signal from the ROX reporter 
can be subtracted from the FAM reporter signal to obtain a nor-
malized signal used for classification. If the normalized signal of 
FAM is observed, samples can be classified as having more positive 
weighted sums; otherwise, samples with greater ROX signals corre-
spond to negative weighted sums. We verified this scheme by using 
36 different weighted-sum (E and F probe) combinations with the 
initial concentrations ranging from 0 to 50 nM. Figure 3f shows that 
only the weighted sums with higher initial concentrations result 
in much higher signals, in agreement with the proposed design 
(Supplementary Fig. 17).

System validation using synthetic miRNAs
We tested the performance of entire system with samples contain-
ing synthetic miRNAs that match the sample profiles from the 
TCGA database (15 NSCLC and 15 healthy samples) (Fig. 4a). 
We replicated the 30 samples by adding synthetic miRNAs on the 
basis of their actual concentrations and ratios calculated from the 
miRNA-seq data in vitro. After amplification, transformation and 
DNA computation, fluorescence signals of FAM (NSCLC) and ROX 
(healthy) were measured to check the diagnostic results of these 
synthetic samples. Only one healthy sample was mis-diagnosed as 
lung cancer, and the remaining 15 NSCLC samples and 14 healthy 
samples were classified correctly with a sensitivity of 100% (95% 
CI: 74.7%, 100%), specificity of 93.3% (95% CI: 66.0%, 99.7%) and 
accuracy of 96.7% (95% CI: 81.9%, 99.9%), which are consistent 
with the results predicted by the in silico SVM model (Fig. 4b,c and 
Supplementary Fig. 18). We also tested four synthetic samples with 
four randomly mixed miRNA sequences as the negative control and 
did not observe obvious reporting fluorescence that can be used for 
diagnosis (Supplementary Fig. 19).

Lung cancer diagnosis using clinical samples
Finally, we tested our DNA computation-based diagnostic system 
with clinical serum samples. We studied two groups of serum sam-
ples (Supplementary Table 1): (1) serum samples from 14 patients 
with NSCLC from stage I to IV and (2) eight healthy individuals’ 
serum samples. Using our previously described workflow, total 
miRNAs in the serum were first extracted from each sample, fol-
lowed by LATE-PCR amplification. The amplified samples were 
further transformed to loop DNA and analysed by adding DNA 
computation probes together with FAM and ROX fluorescent 
reporters, corresponding to cancer and healthy results, respectively 
(Fig. 4d). The performance of our method in diagnosing NSCLC 
is shown in Fig. 4e and Supplementary Fig. 20. It can be seen that 
13 out of 14 NSCLC samples were identified correctly with a sensi-
tivity of 92.9% (95% CI: 64.2%, 99.6%), while two of eight healthy 
samples were mis-diagnosed to cancer with a specificity of 75.0%  
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(95% CI: 35.6%, 95.5%). The total accuracy of this method for NSCLC 
diagnosis in clinical samples was 86.4% (95% CI: 65.8%, 96.1%). It 
should be noted that the only mis-identified sample of NSCLC was 
from a patient diagnosed with stage I NSCLC by the pathological  

section, indicating that this method may be more sensitive to advanced  
stage NSCLC.

Accurate diagnosis of diseases with only a droplet of blood is 
always a goal for clinical medicine. While many pharmaceutical 
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Fig. 3 | Workflow of the DNA computation. a, Scheme for multiplication (Wn × c(An) = Tn). Each loop DNA (An) is targeted with a number of M probes 
equivalent to the weight for DNA multiplication. A fluorescent reporting scheme with M reporter is used to confirm the multiplication results of 
Wn × c(An) = Tn (1). Please refer to Supplementary Fig. 11 for details. b, Fluorescence reporting kinetics (solid lines) and simulations (dotted lines) of different 
concentrations of loop DNA (An) with different weights (Wn = 1, 2, 3 or 4). Linear relationships are obtained between the numbers of M probes and the 
steady-state fluorescence response. The reporter probes were added to the system 10 min after the recording started. Experiments were repeated three 
times independently. c, Scheme for summation (T1 + T2 = E (2); T3 + T4 = F (3)). Taking T1 + T2 = E as an example, this operation is achieved by converting T1 
and T2 into the same product E by interacting with the S probe through a DNA displacement reaction step. A fluorescent reporting scheme with S reporter is 
used to confirm the summation results of T1 + T2 = E. Please refer to Supplementary Fig. 13 for details. d, Fluorescence kinetics (solid lines) and simulations 
(dotted lines) of T1, T2 alone and their sums (T1 + T2) in the presence of equal concentrations of S probes and S reporter (that is, 4 + 4, 2 + 6 and 3 + 5). 
The reporter probes were added to the system 15 min after the recording started. Experiments were repeated three times independently. e, Scheme for 
subtraction (E − F = diagnostic result (4)). This operation is achieved by using an N probe that can annihilate the sums of different types of input. E and F 
individually bind preferentially to the N probe in a reversible manner. Equal amounts of E and F will be consumed by N probes and only the remaining type 
is reported by FAM (corresponding to E) or ROX (corresponding to F) fluorescence with an amplification step for sensitivity improvement. Please refer to 
Supplementary Fig. 16 for details of signal amplification step. f, Two-species winner-takes-all behaviour for different combinations of E and F. The x axis of 
each small graph is time (from 0–60 min) and the y axis is the normalized signal (from 0–100 nM). For detailed experimental conditions for all reactions 
shown in Fig. 3, please see Supplementary Table 3. Zigzag lines indicate toehold domains and straight lines indicate branch-migration domains in DNA 
strands, with arrowheads marking their 3′ ends. Toehold length of t1, t3, t5 and t6 is 6 nt, while the length of t2 and t4 is 8 nt. Fluorescence signal acquisition 
frequency is once per minute with the data normalization details described in the section of Methods.
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entities are investing large amounts of capital for developing auto-
mated instruments that couple advanced detection techniques and 
intelligent data analysis software, our approach provides an alterna-
tive route using traditional equipment together with DNA computa-
tion to realize rapid and accurate cancer diagnosis. This rationally 
designed approach combines an in silico classifier trained by pub-
licly available data, a molecular implementation with a DNA-based 
reaction network and a practical workflow with sample amplifica-
tion, transformation and computation on clinical samples. Using 
this approach, we can achieve NSCLC diagnosis using a 2-ml serum 
sample in 6 h with an accuracy of 86.4%, thus offering unprec-
edented potential for future clinical translation (Supplementary 
Table 2 for comparison with other diagnostic methods of NSCLC).

Several factors contribute to the successful applications of this 
DNA computation system for cancer diagnostics. First, the large 
amount of diagnostic information encoded in a relatively small 
numbers of miRNAs enables us to use a modest number of miRNAs 
to sensitively classify human cancers, while reducing experimental 
deviations resulting from potential crosstalk between large amounts 
of probes and incorrect targets. However, the sizes of the classifiers 
could potentially be further expanded to include more inputs for 
finer disease classification with sufficient sequence orthogonality. 
Second, the power of in silico data training together with the molec-
ular implementation of a winner-takes-all computation scheme 
allows us to perform robust computing-based cancer diagnosis 
without human intervention. This in  situ computation method 

reduces the experimental deviations caused by multiple-batches 
of sensing and analysis by the seamless integration of sensing and 
computing of multiple inputs into one batch operation. Finally, 
an effective pre-amplification step (LATE-PCR) in the workflow 
that maintains the original miRNA quantity information to the 
largest extent also contributes to the robust and sensitive report-
ing of the diagnostic results with human serum samples. Overall,  
the idea we used to program this autonomous molecular system 
provides immediate possibilities in performing in  situ diagnosis 
with advantages such as speed, simplicity, low cost and less ten-
dency for error39,40.

Despite these promising results, this DNA computation system 
still needs optimization for clinical use. For instance, the existing 
method asks for a relatively complicated design scheme that may 
limit its broader applications in point-of-care diagnosis. A more 
programmable automation system for user-defined disease diag-
nostics needs to be further developed. Meanwhile, our system 
should be improved and validated using a large-scale clinical cohort 
involving more detailed information, so that its ability to perform 
early cancer diagnosis can be further explored.

Conclusions
In summary, we designed and tested a DNA computation-based can-
cer diagnostic method that can accurately differentiate NSCLC and 
healthy individuals from their serum samples. We envision that the 
power of DNA computing could inspire more clinical applications 
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towards low-cost, non-invasive and routine early cancer screening 
and classification, as well as monitoring cancer recurrence.
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Methods
SVM training and validation. To train the SVM classifier, we obtained the 
miRNA-seq data of 915 patients with NSCLC and 105 healthy individuals from 
TCGA. Among them, 900 NSCLC and 90 healthy samples were randomly divided 
into a training set and a validation set with a 7:3 ratio for construction of in 
silico model, and the remaining 15 NSCLC and 15 healthy samples were saved 
for experimental testing with synthetic miRNA profiles replicated from those 
samples. Differential expression analysis was first used to identify the primary 
up and down-regulated miRNAs in NSCLC and healthy groups. Second, the 
selected expression data of miRNA was converted mathematically by changing all 
concentration values to their log10 values. A linear SVM classifier was then trained 
on the basis of these logarithmic data (training set including 630 NSCLC and 63 
healthy samples) to classify the cancer and healthy groups using LIBSVM41,42 by 
MATLAB R2018a. This classifier was validated using a validation set (including 
270 NSCLC and 27 healthy samples).

DNA and RNA oligonucleotides and reagents. All DNA and RNA strands were 
prepared and purified (high-performance liquid chromatography) by Sangon. All 
DNA sequences are listed in Supplementary Table 4. DNA probes were suspended 
at 100 μM in 1× TE buffer and stored at 4 °C or −20 °C. RNA probes were stored 
in nuclease-free water at −80 °C until needed. All chemicals were of analytical 
grade and were purchased from Sigma-Aldrich. Buffers were prepared according to 
standard laboratory procedures.

DNA purification. All DNA duplexes were prepared by mixing top and bottom 
strands in a 1:1.2 ratio with specific concentrations detailed in Supplementary 
Table 3. Complexes were annealed in a thermal cycler (Bio-Rad) by heating to 
98 °C for 5 min and then cooling to 25 °C at a rate of 1 °C per 1 min. Probes were 
purified using 12% polyacrylamide gel electrophoresis (PAGE). Double-stranded 
bands were cut out and eluted into 1× TE buffer with 12.5 mM Mg2+. 
Concentrations were determined by NanoDrop (Thermo Fisher).

RNA extraction in serum samples. All serum samples were collected from 
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital (Shanghai, China) 
with informed consent. The study was approved by the Ethics Committee at Renji 
Hospital, School of Medicine, Shanghai Jiao Tong University. All methods were 
performed in accordance with these approved guidelines. Total RNA in serum 
samples was extracted using the miRNeasy Serum/Plasma Kit from Qiagen of 
Canada if not specifically mentioned. All samples were purified according to the 
manufacturer’s instructions without recombinant DNase digest, and the eluted 
RNAs were stored in nuclease-free water at −80 °C until needed. For the studies 
of RNA extraction efficiency, we also used the RNA isolation kit (Direct-zol RNA 
MiniPrep kit R2050) from Zymo Research as a reference.

LATE-PCR and its efficiency. Synthetic or extracted miRNAs were first reverse 
transcribed into cDNA by using a reverse transcription kit in a 20-μl system 
including reverse transcription enzyme and reaction buffer at 37 °C for 60 min 
on a Roche Light Cycler 480 Real-Time PCR System using 96-well plates. Please 
refer to Supplementary Fig. 5 for the mechanism of reverse transcription. 
LATE-PCR reactions were performed in a 20-μl system including template 
cDNA, excess primer, limiting primer, TaqMan probe, Taq DNA polymerase 
and PCR reaction buffer (Sangon). The LATE-PCR efficiency was studied by 
spiking four synthetic miRNAs (miR-148a-3p, miR-182-5p, miR-30d-5p and 
miR-30a-3p) of 10 pM each to four separated PCR tubes and added the four 
corresponding primer combinations (limiting and excess primer), enzymes  
and reporting probes (Taqman). The amplification efficiencies were studied  
by comparing the amplification curve and fluorescence intensities at the  
cycle number of 50. Please refer to Supplementary Table 3 for detailed 
experimental conditions.

Ligation and enzymatic digestion. LATE-PCR amplicons were mixed with 
loop DNA templates for annealing and ligation using a T4 DNA Ligase Kit (New 
England BioLabs) according to the manufacturer’s instructions. We then processed 
the ligation products with Exonuclease I and RNase H (New England Biolabs) to 
eliminate excess amplicons, loop DNA templates and other side products from 
the ligation step, leaving only the loop DNA in the system for DNA computation. 

Please refer to Supplementary Table 3 for the concentrations and other 
experimental conditions used for ligation and enzymatic digestion.

Fluorescence kinetic measurements. Fluorescence kinetics data were collected 
by using a HORIBA FluoroMax 4 spectrofluorometer for single measurement 
and a Synergy H1MF Hybrid Multi-Mode Microplate Reader (BioTek) for 
high-throughput measurement. The reactions (see Supplementary Table 3 for 
concentrations) were carried out in 1× TE buffer with 12.5 mM Mg2+.

Data normalization. Arbitrary fluorescence units were normalized to 
concentrations using a standard curve for each reporter complex. To generate 
a standard curve, annealed reporter complex was suspended in 1× TE buffer 
with 12.5 mM Mg2+, and an initial baseline fluorescence signal was recorded. 
This was followed by addition of a series of known concentrations of reporter 
initiator strands. The linear standard curve was constructed using the steady-state 
fluorescence of different concentrations of reporters.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request. Furthermore, 
the miRNA-seq data used in this study are available on TCGA database  
https://portal.gdc.cancer.gov.

Code availability
The SVM training and validation code used in this study is from ref. 41 and available 
on https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

References
	41.	Chang, C.-C. & Lin, C.-J. LIBSVM: a library for support vector machines. 

ACM T. Intel. Syst. Tec. 2, 27 (2011).
	42.	Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20,  

273–297 (1995).

Acknowledgements
This work was financially supported by the National Natural Science Foundation 
of China (grant nos. 21974087 and 31871009), Shanghai Municipal Education 
Commission—Gaofeng Clinical Medicine Grant Support (no. 20181709), Innovative 
Research Team of High-Level Local Universities in Shanghai, Faculty Start-up Funding 
Support from the Institute of Molecular Medicine of Shanghai Jiao Tong University and 
the Recruitment Programme of Global Youth Experts of China. We thank M. Zhang for 
the help on constructing kinetic models and data simulations. We thank J. Sun for the 
helpful discussion.

Author contributions
C.Z. and D.H. conceived and designed the experiments. C.Z. carried out the assays 
and analysed the results. C.Z., Y.Z., X.X., H.L., R.X., Y.M. and D.H. supported the 
optimization of assays and prepared the data. X.T. and Y.D. collected the specimens. 
D.H., H.-C.L. and C.Z. wrote the manuscript. D.H. supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41565-020-0699-0.

Correspondence and requests for materials should be addressed to D.H.

Peer review information Nature Nanotechnology thanks Tom de Greef and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Nanotechnology | www.nature.com/naturenanotechnology

Content courtesy of Springer Nature, terms of use apply. Rights reserved



1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Da Han

Last updated by author(s): Apr 10, 2020

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code
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Data analysis The SVM training and validation was done using Matlab_R2018a. Data analysis was done using IBM SPSS Statistics V26 and Prism 8.
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Sample size No statistical methods were used to predetermine sample size. Sample size was determined by the number of cases available in the TCGA 
database mined.  For the in silica SVM training and validation, we obtained all the available miRNA-seq data from TCGA database with a total 
of 915 NSCLC and 105 healthy samples. Among them, 900 NSCLC and 90 healthy samples were randomly divided into a training set and a 
validation set with a 7:3 ratio for construction of in silica model, and the remaining 15 NSCLC and 15 healthy samples were saved for 
experimental testing with synthetic miRNA profiles replicated from those samples. For the evaluation of diagnostic accuracy of the DNA 
computation-based method, we used 22 clinical serum samples from 8 healthy and 14 NSCLC individuals. Herein, the sample size was largely 
determined by sample availability.

Data exclusions No data was excluded from the analysis.

Replication We replicated mi RNA extraction, PCR, and fluorescent reporting at least 3 times across different conditions. We did not find any case where 
the data was not able to be replicated.

Randomization NSCLC patients and healthy controls were enrolled in the study based on either confirmed diagnosis of non-small-cell lung cancer or health 
screening reports with no issue of the lungs. Therefore, randomization of individuals in different groups is not applicable.

Blinding No blinding was performed. For training and validation of SVM models, we obtained all the available miRNA-seq data from TCGA database . 
For the clinical samples, we collected known types of samples from hospital according to the experimental needs to verify the accuracy of 
DNA molecular computation.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Study participants include non-small cell lung cancer (NSCLC) patients and healthy individuals. NSCLC samples were from the 
patients of the first diagnosis without any treatment. Healthy samples were from individuals with no issue of lungs reported in 
physical examination. screening reports The age, gender and cancer stage of all samples were not limited. They were collected 
by the hospital within last one year. Detailed clinical sample information is provided in Supplementary Table 1.

Recruitment All subjects were enrolled with Institutional Review Board-approved protocols and all serum samples were collected with 
informed consent. NSCLC patients were recruited based on clinical diagnosis of NSCLC with confirmed pathological biopsy 
results. Healthy individuals were recruited based on their health screening reports with no issue of the lungs. In order to avoid 
bias that may affect the results, all NSCLC samples were taken from patients who have not yet undergone any medical 
treatment.

Ethics oversight All samples analyzed in this study were collected with informed consent from subjects and approved protocols that complied 
with all relevant ethical regulations at Renji Hospital, School of Medicine, Shanghai Jiao Tong University.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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